nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Morphological and Physiological Effects in Proboscia Alata (Bacillariophyceae)Grown under Different Light and CO2 Conditions of the Modern Southern Ocean
Hoogstraten, A.; Timmermans, K.R.; de Baar, H.J.W. (2012). Morphological and Physiological Effects in Proboscia Alata (Bacillariophyceae)Grown under Different Light and CO2 Conditions of the Modern Southern Ocean. J. Phycol. 48(3): 559-568.
In: Journal of Phycology. Blackwell Science: New York. ISSN 0022-3646; e-ISSN 1529-8817, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

    Proboscia alata (Brightwell) Sundström, 1986 [WoRMS]
Author keywords
    Proboscia alata; culture experiments; irradiance; physiology; aqueousCO2; dissolved inorganic carbon; total alkalinity

Auteurs  Top 
  • Hoogstraten, A., meer
  • Timmermans, K.R., meer
  • de Baar, H.J.W., meer

    The combined effects of different light and aqueous CO2 conditions were assessed for the Southern Ocean diatom Proboscia alata (Brightwell) Sundstrom in laboratory experiments. Selected culture conditions (light and CO2(aq)) were representative for the natural ranges in the modern Southern Ocean. Light conditions were 40 (low) and 240 (high) mu mol photons . m-2 . s-1. The three CO2(aq) conditions ranged from 8 to 34 mu mol . kg-1 CO2(aq) (equivalent to a pCO2 from 137 to 598 mu atm, respectively). Clear morphological changes were induced by these different CO2(aq) conditions. Cells in low [CO2(aq)] formed spirals, while many cells in high [CO2(aq)] disintegrated. Cell size and volume were significantly affected by the different CO2(aq) concentrations. Increasing CO2(aq) concentrations led to an increase in particulate organic carbon concentrations per cell in the high light cultures, with exactly the opposite happening in the low light cultures. However, other parameters measured were not influenced by the range of CO2(aq) treatments. This included growth rates, chlorophyll a concentration and photosynthetic yield (FV/FM). Different light treatments had a large effect on nutrient uptake. High light conditions caused an increased nutrient uptake rate compared to cells grown in low light conditions. Light and CO2 conditions co-determined in various ways the response of P. alata to changing environmental conditions. Overall P. alata appeared to be well adapted to the natural variability in light availability and CO2(aq) concentration of the modern Southern Ocean. Nevertheless, our results showed that P. alata is susceptible to future changes in inorganic carbon concentrations in the Southern Ocean.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .