Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges
de Kluijver, A.; Nierop, K.G.J.; Morganti, T.M.; Bart, M.C.; Slaby, B.M.; Hanz, U.; de Goeij, J.M.; Mienis, F.; Middelburg, J.J. (2021). Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS One 16: e0241095. https://doi.org/10.1371/journal.pone.0241095
In: PLoS One. Public Library of Science: San Francisco. ISSN 1932-6203; e-ISSN 1932-6203, meer
| |
Auteurs | | Top |
- de Kluijver, A.
- Nierop, K.G.J.
- Morganti, T.M.
|
- Bart, M.C.
- Slaby, B.M.
- Hanz, U., meer
|
- de Goeij, J.M.
- Mienis, F., meer
- Middelburg, J.J., meer
|
Abstract |
Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as highmicrobial abundance (HMA) species. Geodia hentscheli, G.parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10- and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and hadpredominantly the typical Δ5,9 unsaturation, although the Δ 9,19 and (yet undescribed) Δ11,21 unsaturations werealso identified. G. parva and S.rhaphidiophora each produced distinct LCFAs, while G.atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. Thedifferent bacterial precursors varied in carbon isotopic composition (δ 13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the concept that sponges acquire building blocks from their endosymbiotic bacteria.
|
|