nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea
Brown, A.; Hauton, C.; Stratmann, T.; Sweetman, A.; Van Oevelen, D.; Jones, D.O.B. (2018). Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea. Royal Society Open Science 5: 172162. https://dx.doi.org/10.1098/rsos.172162

Bijhorende data:
In: Royal Society Open Science. The Royal Society: London. ISSN 2054-5703; e-ISSN 2054-5703, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    ecology; evolution; invertebrate; physiology; respiration

Auteurs  Top 
  • Brown, A.
  • Hauton, C.
  • Stratmann, T., meer
  • Sweetman, A.
  • Van Oevelen, D., meer
  • Jones, D.O.B.

Abstract
    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .