nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [281224]
Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen
Lipsewers, Y.A.; Hopmans, E.C.; Meysman, F.J.R.; Sinninghe Damsté, J.S.; Villanueva, L. (2016). Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen. Front. Microbiol. 7: 1661. dx.doi.org/10.3389/fmicb.2016.01661
In: Frontiers in Microbiology. Frontiers Media: Lausanne. ISSN 1664-302X; e-ISSN 1664-302X, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
Author keywords
    anammoxbacteria; denitrifiers; sulfide-oxidizingbacteria; nirS gene; aprA gene; intactpolarlipids(IPL); ladderanelipid

Auteurs  Top 
  • Lipsewers, Y.A., meer
  • Hopmans, E.C., meer
  • Meysman, F.J.R., meer
  • Sinninghe Damsté, J.S., meer
  • Villanueva, L., meer

Abstract
    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .