nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Event reconstruction for KM3NeT/ORCA using convolutional neural networks
Aiello, S.; Albert, A.; Garre, S. Alves; Aly, Z.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anguita, M.; Anton, G.; Ardid, M.; Aublin, J.; Bagatelas, C.; Barbarino, G.; Baret, B.; Pree, S. Basegmez du; Bendahman, M.; Berbee, E.; van den Berg, A.M.; Bertin, V.; Biagi, S.; Biagioni, A.; Bissinger, M.; Boettcher, M.; Boumaaza, J.; Bouta, M.; Bouwhuis, M.; Bozza, C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Caiffi, B.; Calvo, D.; Capone, A.; Carretero, V.; Castaldi, P.; Celli, S.; Chabab, M.; Chau, N.; Chen, A.; Cherubini, S.; Chiarella, V.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coelho, J.A.B.; Coleiro, A.; Molla, M. Colomer; Coniglione, R.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Onofrio, A.; Dallier, R.; Palma, M. De; Palma, I. Di; Díaz, A.F.; Diego-Tortosa, D.; Distefano, C.; Domi, A.; Donà, R.; Donzaud, C.; Dornic, D.; Dörr, M.; Drouhin, D.; Eberl, T.; Eddyamoui, A.; Eeden, T. van; Eijk, D. van; Bojaddaini, I. El; Elsaesser, D.; Enzenhöfer, A.; Roselló, V. Espinosa; Fermani, P.; Ferrara, G.; Filipović, M. D.; Filippini, F.; Fusco, L.A.; Gabella, O.; Gal, T.; Soto, A. Garcia; Garufi, F.; Gatelet, Y.; Geißelbrecht, N.; Gialanella, L.; Giorgio, E.; Gozzini, S.R.; Gracia, R.; Graf, K.; Grasso, D.; Grella, G.; Guderian, D.; Guidi, C.; Hallmann, S.; Hamdaoui, H.; Haren, H. van; Heijboer, A.; Hekalo, A.; Hernández-Rey, J.J.; Hofestädt, J.; Huang, F.; Ibnsalih, W. Idrissi; Illuminati, G.; James, C.W.; de Jong, M.; de Jong, P.; Jung, B.J.; Kadler, M.; Kalaczyński, P.; Kalekin, O.; Katz, U.F.; Chowdhury, N.R Khan; Kistauri, G.; Knaap, F. van der; Koffeman, E.N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Larosa, G.; Breton, R. Le; Leonardi, O.; Leone, F.; Leonora, E.; Levi, G.; Lincetto, M.; Clark, M. Lindsey; Lipreau, T.; Lonardo, A.; Longhitano, F.; Lopez-Coto, D.; Maderer, L.; Mańczak, J.; Mannheim, K.; Margiotta, A.; Marinelli, A.; Markou, C.; Martin, L.; Martínez-Mora, J.A.; Martini, A.; Marzaioli, F.; Mastroianni, S.; Mazzou, S.; Melis, K.W.; Miele, G.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miranda, L.S.; Mollo, C.M.; Morganti, M.; Moser, M.; Moussa, A.; Muller, R.; Musumeci, M.; Nauta, L.; Navas, S.; Nicolau, C.A.; Ó Fearraigh, B.; Organokov, M.; Orlando, A.; Papalashvili, G.; Papaleo, R.; Pastore, C.; Păun, A. M.; Păvălaş, G.E.; Pellegrino, C.; Perrin-Terrin, M.; Piattelli, P.; Pieterse, C.; Pikounis, K.; Pisanti, O.; Poirè, C.; Popa, V.; Post, M.; Pradier, T.; Pühlhofer, G.; Pulvirenti, S.; Rabyang, O.; Raffaelli, F.; Randazzo, N.; Rapicavoli, A.; Razzaque, S.; Real, D.; Reck, S.; Riccobene, G.; Richer, M.; Rivoire, S.; Rovelli, A.; Greus, F. Salesa; Samtleben, D.F.E.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schnabel, J.; Seneca, J.; Sgura, I.; Shanidze, R.; Sharma, A.; Simeone, F.; Sinopoulou, A.; Spisso, B.; Spurio, M.; Stavropoulos, D.; Steijger, J.; Stellacci, S.M.; Taiuti, M.; Tayalati, Y.; Tenllado, E.; Thakore, T.; Tingay, S.; Tzamariudaki, E.; Tzanetatos, D.; Elewyck, V. Van; Vannoye, G.; Vasileiadis, G.; Versari, F.; Viola, S.; Vivolo, D.; de Wasseige, G.; Wilms, J.; Wojaczyński, R.; de Wolf, E.; Zaborov, D.; Zavatarelli, S.; Zegarelli, A.; Zito, D.; Zornoza, J.D.; Zúñiga, J.; Zywucka, N. (2020). Event reconstruction for KM3NeT/ORCA using convolutional neural networks. J. Instrum. 15(10): P10005-P10005. https://doi.org/10.1088/1748-0221/15/10/p10005
In: Journal of Instrumentation. IOP Publishing: Bristol. e-ISSN 1748-0221, meer
Peer reviewed article  

Beschikbaar in  Auteur 

Author keywords
    Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors; Performance of High Energy Physics Detectors

Auteur  Top 
  • van Haren, H., meer

Abstract
    The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteur 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .