nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [323425]
Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes
Zhao, Z.; Baltar, F.; Herndl, G. (2020). Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Science Advances 6(16): eaaz4354. https://dx.doi.org/10.1126/sciadv.aaz4354
In: Science Advances. AAAS: New York. e-ISSN 2375-2548, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Auteurs  Top 
  • Zhao, Z.
  • Baltar, F.
  • Herndl, G., meer

Abstract
    Heterotrophic prokaryotes express extracellular hydrolytic enzymes to cleave large organic molecules before taking up the hydrolyzed products. According to foraging theory, extracellular enzymes should be cell associated in dilute systems such as deep sea habitats, but secreted into the surrounding medium in diffusion-limited systems. However, extracellular enzymes in the deep sea are found mainly dissolved in ambient water rather than cell associated. In order to resolve this paradox, we conducted a global survey of peptidases and carbohydrate-active enzymes (CAZymes), two key enzyme groups initiating organic matter assimilation, in an integrated metagenomics, metatranscriptomics, and metaproteomics approach. The abundance, percentage, and diversity of genes encoding secretory processes, i.e., dissolved enzymes, consistently increased from epipelagic to bathypelagic waters, indicating that organic matter cleavage, and hence prokaryotic metabolism, is mediated mainly by particle-associated prokaryotes releasing their extracellular enzymes into diffusion-limited particles in the bathypelagic realm.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .