nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Pushing the limits of seagrass remote sensing in the turbid waters of Elkhorn Slough, California
Dierssen, H.M.; Bostrom, K.J.; Chlus, A.; Hammerstrom, K.; Thompson, D.R.; Lee, Z. (2019). Pushing the limits of seagrass remote sensing in the turbid waters of Elkhorn Slough, California. Remote Sens. 11(14): 1664. https://hdl.handle.net/10.3390/rs11141664
In: Remote Sensing. MDPI: Basel. ISSN 2072-4292; e-ISSN 2072-4292, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien
Author keywords
    hyperspectral airborne imagery; eelgrass; optically shallow water; ocean color; prism; water quality; bathymetry

Auteurs  Top 
  • Dierssen, H.M.
  • Bostrom, K.J.
  • Chlus, A.
  • Hammerstrom, K.
  • Thompson, D.R.
  • Lee, Z.

Abstract
    Remote sensing imagery has been successfully used to map seagrass in clear waters, but here we evaluate the advantages and limitations of different remote sensing techniques to detect eelgrass in the tidal embayment of Elkhorn Slough, CA. Pseudo true-color imagery from Google Earth and broadband satellite imagery from Sentinel-2 allowed for detection of the various beds, but retrievals particularly in the deeper Vierra bed proved unreliable over time due to variable image quality and environmental conditions. Calibrated water-leaving reflectance spectrum from airborne hyperspectral imagery at 1-m resolution from the Portable Remote Imaging SpectroMeter (PRISM) revealed the extent of both shallow and deep eelgrass beds using the HOPE semi-analytical inversion model. The model was able to reveal subtle differences in spectral shape, even when remote sensing reflectance over the Vierra bed was not visibly distinguishable. Empirical methods exploiting the red edge of reflectance to differentiate submerged vegetation only retrieved the extent of shallow alongshore beds. The HOPE model also accurately retrieved the water column absorption properties, chlorophyll-a, and bathymetry but underestimated the particulate backscattering and suspended matter when benthic reflectance was represented as a horizontal eelgrass leaf. More accurate water column backscattering could be achieved by the use of a darker bottom spectrum representing an eelgrass canopy. These results illustrate how high quality atmospherically-corrected hyperspectral imagery can be used to map eelgrass beds, even in regions prone to sediment resuspension, and to quantify bathymetry and water quality.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .