nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction
Asselman, J.; De Coninck, D.I.M.; Vandegehuchte, M.B.; Jansen, M.; Decaestecker, E.; De Meester, L.; Vanden Bussche, J.; Vanhaecke, L.; Janssen, C.R.; De Schamphelaere, K.A.C. (2015). Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction. Environ. Toxicol. Chem. 34(5): 1056-1061. https://hdl.handle.net/10.1002/etc.2887
In: Environmental Toxicology and Chemistry. Setac Press: New York. ISSN 0730-7268; e-ISSN 1552-8618, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    Cytosine methylation;Aquatic invertebrate;Environmental toxicology;Epigenetics;Ecotoxicology

Auteurs  Top 
  • Asselman, J.
  • De Coninck, D.I.M.
  • Vandegehuchte, M.B.
  • Jansen, M.
  • Decaestecker, E.
  • De Meester, L.
  • Vanden Bussche, J.
  • Vanhaecke, L.
  • Janssen, C.R.
  • De Schamphelaere, K.A.C.

Abstract
    The authors characterized global cytosine methylation levels in 2 different genotypes of the ecotoxicological model organism Daphnia magna after exposure to a wide array of biotic and abiotic environmental stressors. The present study aimed to improve the authors' understanding of the role of cytosine methylation in the organism's response to environmental conditions. The authors observed a significant genotype effect, an environment effect, and a genotype × environment effect. In particular, global cytosine methylation levels were significantly altered after exposure to Triops predation cues, Microcystis, and sodium chloride compared with control conditions. Significant differences between the 2 genotypes were observed when animals were exposed to Triops predation cues, Microcystis, Cryptomonas, and sodium chloride. Despite the low global methylation rate under control conditions (0.49–0.52%), global cytosine methylation levels upon exposure to Triops demonstrated a 5-fold difference between the genotypes (0.21% vs 1.02%). No effects were found in response to arsenic, cadmium, fish, lead, pH of 5.5, pH of 8, temperature, hypoxia, and white fat cell disease. The authors' results point to the potential role of epigenetic effects under changing environmental conditions such as predation (i.e., Triops), diet (i.e., Cryptomonas and Microcystis), and salinity. The results of the present study indicate that, despite global cytosine methylation levels being low, epigenetic effects may be important in environmental studies on Daphnia.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .