nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Emergence of blueschists on Earth linked to secular changes in oceanic crust composition
Palin, R.M.; White, R.W. (2016). Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nature Geoscience 9(1): 60-64. http://hdl.handle.net/10.1038/ngeo2605
In: Nature Geoscience. Nature Publishing Group: London. ISSN 1752-0894; e-ISSN 1752-0908, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien

Auteurs  Top 
  • Palin, R.M.
  • White, R.W.

Abstract
    The oldest blueschists-metamorphic rocks formed during subduction-are of Neoproterozoic age(1), and 0.7-0.8 billion years old. Yet, subduction of oceanic crust to mantle depths is thought to have occurred since the Hadean, over 4 billion years ago(2). Blueschists typically form under cold geothermal gradients of less than 400 degrees C GPa(-1), so their absence in the ancient rock record is typically attributed to hotter pre-Neoproterozoic mantle prohibiting such low-temperature metamorphism; however, modern analogues of Archaean subduction suggest that blueschist-facies metamorphic conditions are attainable at the slab surface(3). Here we show that the absence of blueschists in the ancient geological record can be attributed to the changing composition of oceanic crust throughout Earth history, which is a consequence of secular cooling of the mantle since the Archaean(4). Oceanic crust formed on the hot, early Earth would have been rich in magnesium oxide (MgO). We use phase equilibria calculations to show that blueschists do not form in high-MgO rocks under subduction-related geothermal gradients. Instead, the subduction of MgO-rich oceanic crust would have created greenschist-like rocks-metamorphic rocks formed today at low temperatures and pressures. These ancient metamorphic products can hold about 20% more water than younger metamorphosed oceanic crust, implying that the global hydrologic cycle was more efficient in the deep geological past than today.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .