nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Experimental ocean acidification alters the allocation of metabolic energy
Pan, T.-C.F.; Applebaum, S.L.; Manahan, D.T. (2015). Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl. Acad. Sci. U.S.A. 112(15): 4696-4701. http://dx.doi.org/10.1073/pnas.1416967112
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424; e-ISSN 1091-6490, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien
Author keywords
    ocean acidification; sea urchin; energetics; metabolic allocation;development

Auteurs  Top 
  • Pan, T.-C.F.
  • Applebaum, S.L.
  • Manahan, D.T.

Abstract
    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ~50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .