nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Spartina maritima (cordgrass) rhizosediment extracellular enzymatic activity and its role in organic matter decomposition processes and metal speciation
Duarte, B.; Almeida, P.R.; Caçador, I. (2009). Spartina maritima (cordgrass) rhizosediment extracellular enzymatic activity and its role in organic matter decomposition processes and metal speciation, in: Proceedings of the 43rd European Marine Biology Symposium, The Azores Islands (Portugal), 8-12 September 2008. Marine Ecology (Berlin), 30(S1): pp. 65-73. dx.doi.org/10.1111/j.1439-0485.2009.00326.x
In: (2009). Proceedings of the 43rd European Marine Biology Symposium, The Azores Islands (Portugal), 8-12 September 2008. Marine Ecology (Berlin), 30(S1). Wiley: London. 202 pp.
In: Marine Ecology (Berlin). Blackwell: Berlin. ISSN 0173-9565; e-ISSN 1439-0485, meer
Peer reviewed article  

Beschikbaar in  Auteurs 
Documenttype: Congresbijdrage

Trefwoord
    Marien
Author keywords
    Extracellular enzymatic activity; metal speciation; salt marsh; sediment

Auteurs  Top 
  • Duarte, B.
  • Almeida, P.R.
  • Caçador, I.

Abstract
    Seasonal monitoring was carried out to investigate the influence of extracellular enzymatic activity (EEA) on metal speciation and organic matter cycling in the rhizosediment of Spartina maritima. Heavy metal speciation was achieved by the Tessier scheme, and showed a similar pattern of variation of the organic-bound fraction, indicating a decomposition process in progress. Both humic acid and organic matter showed the same seasonal pattern. The basal respiration of the rhizosediments also presented a similar seasonal pattern, indicating a microbial degradation of organic matter. The high organic-bound fraction found in the summer gradually decreased towards the winter. This decrease was found to be related to the increase of activity of peroxidase, ß-N-acetylglucosaminidase and protease. Also the activity of sulphatase was found to be related to the depletion on the exchangeable fraction, probably due to sulphide formation and consequent mobilization. The results show an interaction between several microbial activities, affecting metal speciation.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .