nieuwe zoekopdracht
[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [119954]
The influence of salinity on the solubility of Zn and Cd sulphides in the Scheldt estuary
Gerringa, L.J.A.; de Baar, H.J.W.; Nolting, R.F.; Paucot, H. (2001). The influence of salinity on the solubility of Zn and Cd sulphides in the Scheldt estuary. J. Sea Res. 46(3-4): 201-211. dx.doi.org/10.1016/S1385-1101(01)00081-8
In: Journal of Sea Research. Elsevier/Netherlands Institute for Sea Research: Amsterdam; Den Burg. ISSN 1385-1101; e-ISSN 1873-1414, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Chemical compounds > Sulphur compounds > Sulphides
    Properties > Chemical properties > Salinity
    Brak water; Zoet water
Author keywords
    redox processes; cadmium; zinc; estuary

Auteurs  Top 
  • Gerringa, L.J.A., meer
  • de Baar, H.J.W.
  • Nolting, R.F.
  • Paucot, H.

Abstract
    In the estuary of the river Scheldt, where an oxygen gradient exists in addition to the salinity gradient, redox processes will be of major importance for trace metal mobilisation. In this study, the influence of salinity and pH on the redox processes of dissolved Zn and Cd sulphides is investigated together with the effects on the ratio of the dissolved Zn and Cd concentrations. The speciation of these metals is calculated with the chemical equilibrium programme MINEQL + .Zn sulphides are oxidised at lower oxygen concentrations than Cd sulphides, due to lower stability constants, causing a sudden increase or peak in the dissolved Zn/Cd ratio. The formation of dissolved Cd chloride complexes when oxidation occurs at high salinities (S = 15) increases the mobility of Cd, causing a decrease in the Zn/Cd peak of the total dissolved concentrations. The peak is three to four times smaller at S = 15 than when oxidation occurs at S = 2. The simple model calculations compare very well with field data. The Scheldt estuary is suitable to illustrate these calculations. In the, 1970s, the anoxic part of the estuary reached S = 15-20, but since the early 1980s it has dropped to S = 2-10. Historic data on metals in the estuary from 1978, 1987 and the 1990s were used to compare with the equilibrium calculations. The increase of the dissolved Zn/Cd peak at low salinity as a consequence, of the decreasing anoxic region is confirmed well by the data. The good agreement between model calculations and field data is a proof of the extreme importance of redox processes for the solubility of Zn and Cd sulphides in the estuary.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
IMIS is ontwikkeld en wordt gehost door het VLIZ, voor meer informatie contacteer .